

β-1,3 葡聚糖酶(β-1,3-glucanase, β-1,3-GA)试剂盒说明书

(货号: BP10287W 微板法 96样 有效期: 6个月)

一、指标介绍:

β-1,3 葡聚糖酶 (β-1,3-GA, EC 3.2.1.39)主要存在植物中,催化β-1,3-葡萄糖苷键水解,进而破坏真菌细胞壁,特别是与几丁质酶的协同作用下,可明显抑制真菌的生长。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,以增强植物体对不良外界刺激产生抗性反应,因此β-1,3-GA 活性测定广泛应用于植物病理和逆境生理研究。

β-1,3-GA 水解昆布多糖的β-1,3-葡萄糖苷键,产生还原末端。利用 3,5 二硝基水杨酸测定还原糖的量,在 540nm 读取吸光值,进而得出β-1,3 葡聚糖酶的活性。

二、试剂盒组成和配制:

	m>m1941H01.1.1							
试剂组分	试剂规格	存放温度	注意事项					
提取液	液体 120mL×1 瓶	4℃避光保存						
试剂一	液体 8mL×1 瓶	4℃避光保存						
		4℃保存	1. 开盖前注意使粉体落入底部(可					
试剂二	粉剂1瓶		手动甩一甩);					
			2. 加入 4.5mL 试剂一, 充分溶解待					
			用;					
			3. 用不完的试剂 4℃保存。					
试剂三	液体 60mL×1 瓶	4℃避光保存						
标准品	粉剂1支	4℃保存	1. 若重新做标曲,则用到该试剂;					
			2. 按照说明书中标曲制作步骤进行					
			配制;					
			3. 溶解后的标品一周内用完。					

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

- ① 组织样本: 称取约 0.2g 组织(水分充足的样本可取 1g),加入 1mL 经预冷的 95%乙醇冰浴匀浆, 4° C放置 10min; 12000rpm, 4° C离心 5min; 弃上清,留沉淀,向沉淀中加入经预冷的 1mL 的 80%乙醇混匀, 4° C放置 10min; 12000rpm, 4° C离心 5min; 弃上清,留沉淀。再向沉淀中加入 1mL 经预冷提取液,涡旋混匀, 4° C放置 10min; 12000rpm, 4° C离心 10min; 留上清,弃沉淀。上清液置冰上待测。
- ② 细菌/真菌样本: 先收集细菌/真菌到离心管内, 离心后弃上清; 取 500 万细菌/真菌加入 1mL 提取液; 冰浴超声波破碎细菌/真菌 (冰浴, 功率 20%或 200W, 超声 3s, 间隔 10s, 重复 30 次); 12000rpm, 4°C离心 10min, 取上清, 置冰上待测。

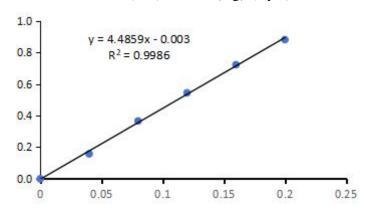
【注】: 也可按照细菌或细胞数量(10⁴个): 提取液体积(mL)为 500~1000: 1 的比例进行提取)

③ 液体样本:直接检测。若浑浊,离心后取上清检测。

2、检测步骤:

① 酶标仪预热 30min 以上,调节波长至 540nm。

网址: www.bpelisa.com


② 在 EP 管中依次加入下列试剂:

试剂组分 (μL)	测定管	对照管			
样本	20				
煮沸样本*		20			
试剂二	20	20			
充分混匀,放入 37℃水浴 30 min。					
试剂三	300	300			
混匀,95℃水浴 5min(可用封口膜缠紧,防止水分散失),流水冷却至室					
温。					
蒸馏水	560	560			
混匀,取 200μL 至 96 孔板中,540nm 处记录各管吸光值 A,					
ΔA=A 测定-A 对照(每个样本一个对照管)。					

- 【注】: 1.煮沸样本*: 将同一个样本在沸水 (98-100°C) 中煮沸 15 分钟, 以将酶彻底灭活, 再 12000rpm, 4°C离心 10min; 上清液备用。
 - 2.若ΔA 很小在零附近徘徊,可在样本提取时加大取样质量 W(由 0.2g 增加到 0.5g 等),或增加样本加样量 V1(由 20μ L 增加到 100μ L,相应的蒸馏水减少,保持总体积 900μ L 不变),或延长 37° C水浴时间 T(由 30min 增至 60min),则改变后的 W 和 V1 和 T 需代入计算公式重新计算。

五、结果计算:

1、标准曲线方程: y = 4.4859x - 0.003; x 为标准品质量 (mg) , y 为 ΔA 。

2、按蛋白浓度计算:

酶活定义: 每毫克组织蛋白每分钟分解昆布多糖产生 $1\mu g$ 葡萄糖定义为一个酶活性单位。 β -1,3-GA(μg /min/mg prot)=[(ΔA +0.003)÷4.4859×10³]÷(V1×Cpr)÷T=371.5×(ΔA +0.003)÷Cpr 3、按样本鲜重计算:

酶活定义: 每克组织每分钟分解昆布多糖产生 $1\mu g$ 葡萄糖定义为一个酶活性单位。 β-1,3-GA($\mu g/min/g$ 鲜重)=[($\Delta A+0.003$)÷4.4859× 10^3]÷(W×V1÷V) ÷T=371.5×($\Delta A+0.003$)÷W 4、按细菌/真菌密度计算:

酶活定义:每1万个细菌或真菌每分钟分解昆布多糖产生 $1\mu g$ 葡萄糖定义为一个酶活性单位。 β-1,3-GA($\mu g/min/10^4$ cell)=[($\Delta A+0.003$)÷ 4.4859×10^3]÷($500\times V1\div V$)÷ $T=0.743\times(\Delta A+0.003)$ 5、按液体体积计算:

酶活定义:每毫升样本每分钟分解昆布多糖产生 $1\mu g$ 葡萄糖定义为一个酶活性单位。 β-1,3-GA($\mu g/min/mL$)=[($\Delta A+0.003$)÷4.4859×10³]÷V1÷T=371.5×($\Delta A+0.003$)

V---加入提取液体积, 1mL; V1---加入样本体积, 20μL=0.02mL; T---30min;

W---样本鲜重, g; 500---细菌/真菌总数, 500万; 葡萄糖分子量---180.16;

Cpr---样本蛋白质浓,mg/mL;建议使用本公司的 BCA 蛋白含量检测试剂盒。

附:标准曲线制作过程:

1 向标准品 EP 管里面加入 1mL 蒸馏水(母液需在两天内用且-20℃保存),标准品母液浓度为 10mg/mL。将母液用蒸馏水稀释成六个浓度梯度的标准品,例如: 0, 2, 4, 6, 8, 10. mg/mL。也可根据实际样本调整标准品浓度。

2 标品稀释参照表如下:

标品浓度	0	2	4	6	Q	10
mg/mL	O	2		0	0	10
标品稀释液	0	40	90	120	1.00	200
uL	0	40	80	120	160	200
水 uL	200	160	120	80	40	0
各标准管混匀待用。						

3 依据测定管加样表操作,根据结果,以各浓度吸光值减去0浓度吸光值,过0点制作标准曲线。

ATTENDED	,	~~ ···································			
试剂名称 (μL)	标准管	0浓度管(仅做一次)			
标品	20				
蒸馏水	20	40			
充分混匀,放入 37℃水浴 30 min。					
试剂三	300	300			
混匀,95℃水浴 5min(可用封口膜缠紧,防止水分散失),流					
水冷却至室温。					
蒸馏水	560	560			
混匀,取 200μL 至 96 孔板中,540nm 处记录各管吸光值 A,					
△A=A 测定-0 浓度管。					

网址: www.bpelisa.com